
Abstractions & Errors

Ground Work

What is an Abstraction?

macOS Dictionary says
the process of considering something independently of its associations, attributes, or concrete accompaniments

Wikipedia says
the creation of abstract concept-objects by mirroring common features or attributes of various non-abstract objects or systems of

study[3] – the result of the process of abstraction.

the act of creating a new concept & hiding details or
attributes away

Abstractions & Tools for creating Abstractions
programming languages

functions

classes

methods

modules

structs

The term & concept of Abstractions is overloaded!

Control Abstraction

modules, functions, or methods are the common tools used for implementing this class of abstractions.

Structured Programming in general an example of this.

The above uses a number of procedural abstractions

+ addition operator

* multiplication operator

() precedence operator

:= assignment operator.

Also known as Procedural Abstractions.

a := (1 + 2) * 5

` `

` `

` `

` `

Data Abstraction

structs and classes are the common tools used for implemeting this class of abstractions.

Data abstractions that don’t hide attributes are still valuable because they still introduce a concept.

Abstractions & Programming Paradigms
Functional Programming

Data Abstractions

Operation Abstractions

Object Oriented Programming
Merge of Data & Operation Abstractions

So really what is the abstraction then?

Anatomy of Abstraction
A contrived example

function add(v1: number, v2: number): number {

	 return v1 + v2

}

Anatomy of Abstraction

name - add

interface - add(number, number): number

inputs - (number, number)

return - number

internals (hidden away) - v1 + v2

A contrived example

function add(v1: number, v2: number): number {

	 return v1 + v2

}

` `

` `

` `

` `

` `

Anatomy of Abstraction
name

interface

inputs

return

internals (hidden away)

So again what is the abstraction then?

The Abstraction is two things
Concept

Interface

From the previous example we would have the following:

Concept - adding

Interface - add(number, number): number

In many languages protocols / interfaces can be defined to help formalize the concept of interfaces. It is
imporant to understand that they exist irrespective of being formalized.

Many languages also provide generics to facilitate implemnting even more abstract/generic functions.

` `

` `

function add<T>(v1: T, v2: T): T {

	 return v1 + v2

}

Another Example - What could go wrong?
function getUserProfile(userId: string): UserProfile {

	 const userProfile = restClient.get('/user/' + userId);

	 return userProfile

}

Another Example - What could go wrong?

restClient.get can throw a RestClientError exception

function getUserProfile(userId: string): UserProfile {

	 const userProfile = restClient.get('/user/' + userId);

	 return userProfile

}

` ` ` `

Another Example - Abstraction Anatomy?

name -

interface -

inputs -

return -

internals (hidden away) -

function getUserProfile(userId: string): UserProfile {

	 const userProfile = restClient.get('/user/' + userId);

	 return userProfile

}

Another Example - Anything else wrong?

name - getUserProfile

interface - getUserProfile(string): UserProfile

inputs - (string)

return - UserProfile

internals (hidden away) - restClient.get(...) - the how of getting the user profile

function getUserProfile(userId: string): UserProfile {

	 const userProfile = restClient.get('/user/' + userId);

	 return userProfile

}

` `

` `

` `

` `

` `

Another Example - Implicit Exception Missing

name - getUserProfile

interface - getUserProfile(string): UserProfile

inputs - (string)

return - UserProfile

exceptions - RestClientError

internals (hidden away) - restClient.get(...) - the how of getting the user profile

function getUserProfile(userId: string): UserProfile {

	 const userProfile = restClient.get('/user/' + userId);

	 return userProfile

}

` `

` `

` `

` `

` `

` `

Leaky Abstraction
A.K.A. a non "Holding an Abstraction"
This basically means that some detail of the internals that is supposed to be hidden away is being exposed.

In the above example the RestClientError was a lower level implementation details that was being leaked
out.

` `

Exceptions - What did we learn?
implicit

they promote leaky abstractions

What is the alternative?

Result Type

an abstraction that allows us to formalize the concept of success/failure in an explicit manner

Result is similar to the concept of Optional or Maybe which represent two states, the state of having a
value vs not having a value. But in the case of Result it represents something being successful or not
successful.

Result can conceptually be thought of as an enum with associated values. In fact in many languages it is
implemented this way.

A.K.A - Either

` ` ` ` ` `

` `

` ` ` `

Ok(value)

Err(error)

Result Example
Before
with exceptions we had to magically know it could throw a RestClientError exception.

Now
with Result

from the signature we explicitly know what type of errors are possible, RestClientError

the type system helps us make sure we handle both the success and failure cases

` `

restClient.get(url: string): Response

` `

` `

restClient.get(url: string): Result<Response, RestClientError>

Result - learnings
solves implicitness of exceptions

makes it possible to use the type system to make sure we are handling the error cases

promotes "Held Abstractions"

Held Abstractions

Yes, and you should have been already doing this.

By not doing this you have been propagating internals of abstractions through many if not all layers of your
application. Effectively making all your abstractions leaky abstractions.

It doesn't have to be that hard though

But if we make our abstractions held/true we will have to create a bunch of error types and do a bunch of
mapping between them right?

Classifying Errors

Create an error type to represent a class of errors and then use that error type as part of multiple abstraction
interfaces.

IOError as an example of this.

You could in theory have a bunch of procedural abstractions that abstract away interacting with the file
system. All of these could use the IOError type.

Warning
Classifying errors or even using classified error types takes a lot of thought and is a tricky thing to do. You can
easily end up in scenarios where a subset of a classified error type makes sense for your abstraction but the
other cases don’t.

Way to reduce number of error types you have to create.

` `

` `

Abstraction Layering/Building

We can start to see this with the example we had before.

We have the getUserProfile abstraction which is abstracting away the how of getting the user profile.

The internals of that abstraction are using the restClient.get() abstraction.

Leaving us with an abstraction layering of getUserProfile() -> restClient.get() .

Mapping between layers of abstraction

function getUserProfile(userId: string): UserProfile {

	 const userProfile = restClient.get('/user/' + userId);

	 return userProfile

}

` `

` `

` `

Abstraction Layering/Building

If we had the exception version of restClient.get() we would have to catch the exception and map it to a
Result with an error type matching the layer of our getUserProfile abstraction, e.g.
GetUserProfileError .

Otherwise we would have a leaky abstraction.

Mapping between layers of abstraction

` `

` ` ` `

` `

function createGetUserProfileError(error: RestClientError): GetUserProfileError {

	 ...

}

function getUserProfile(userId: string): Result<UserProfile, GetUserProfileError> {

	 try {

	 	 const userProfile = restClient.get('/user/' + userId);

	 	 return Ok(userProfile);

	 } catch (error) {

	 	 return Err(createGetUserProfileError(error));

	 }

}

Abstraction Layering/Building

If we had the Result version of restClient.get() we would still have to map the error.

Mapping between layers of abstraction

` ` ` `

function createGetUserProfileError(error: RestClientError): GetUserProfileError {

	 ...

}

function getUserProfile(userId: string): Result<UserProfile, GetUserProfileError> {

	 const result = restClient.get('/user/' + userId);

	 if (result.ok) {

	 	 return Ok(result.val);

	 } else {

	 	 return Err(createGetUserProfileError(result.val));

	 }

}

Those are basically the same though!

Abstraction Layering/Building - Result helps

Result types provides us a mapErr method to help us specifically with this case.

The mapErr method collapses the conditional away and applys the createGetUserProfileError function
in the case where the result is unsuccessful.

Mapping between layers of abstraction

` ` ` `

function createGetUserProfileError(error: RestClientError): GetUserProfileError {

	 ...

}

function getUserProfile(userId: string): Result<UserProfile, GetUserProfileError> {

	 return restClient.get('/user/' + userId)

	 	 .mapErr(createGetUserProfileError);

}

` ` ` `

Abstraction Layering/Building

There is more to it though right?
We probably want to do other things with errors in certain cases.

Mapping between layers of abstraction

There are only so many options

Abstraction Layering/Buliding - Error Handling
What do we do with errors?

consume the error if we can programmatically handle it

translate error into a higher level abstraction error

nest error into a higher level abstraction error

propagate error through without nesting (probably creating a leaky abstraction)

Error Handling - Consume

Result provides unwrapOr() to facilitate this.

Consuming and handling errors so consumers of your abstraction don’t have to.

` ` ` `

function createDefaultUserProfile(): UserProfile {

	 ...

}

function getUserProfile(userId: string): UserProfile {

	 const defaultProfile = createDefaultUserProfile();

	 return restClient.get('/user/' + userId)

	 	 .unwrapOr(defaultProfile);

}

Error Handling - Translate/Nest

Result provides mapErr to facilitate this.

Translating/Nesting lower level errors into error types fitting to your abstraction layer so consumers are
working at the same layer of abstraction.

` ` ` `

function createGetUserProfileError(error: RestClientError): GetUserProfileError {

	 // only difference is the logic here for Translate vs. Nest

	 ...

}

function getUserProfile(userId: string): Result<UserProfile, GetUserProfileError> {

	 return restClient.get('/user/' + userId)

	 	 .mapErr(createGetUserProfileError);

}

Error Handling - Propagate

The following as an example of how to do it. But it is a leaky abstraction so it is an example of what you
shouldn’t do.

Warning
Be careful when doing this as you are likely creating a leaky abstraction. You should only use this when you are
propagating a classified error that can safely span abstraction layers without causing a leaky abstraction.

Propagating a classified error fitting for the traversed layers of abstraction so that consumers of the higher
level abstraction can handle the error.

function getUserProfile(userId: string): Result<UserProfile, RestClientError> {

	 return restClient.get('/user/' + userId);

}

Sprawl?

Actually it is a natural collapsing pattern because the inner most layers of your application architecture that
have possible errors get aggregated/grouped into errors at higher levels of abstraction.

You can look it at like a pyramid with the error originators at the base and the highest level error abstractions
at the top.

You might be thinking. Doesn’t this sprawl out of control?

Questions?

